Georgia Tech astrobiologists develop COVID-19 test kit

Astrobiology News

In spring-summer 2020, Georgia Tech astrobiologists teamed up to create an in-house test kit to boost testing supplies. Read the NASA press release here.

Pre-print posted to MedRxiv on July 31, 2020:

SJ Mascuch, S Fakhretaha-Aval, JC Bowman, MTH Ma, G Thomas, B Bommarius, C Ito, L Zhao, GP Newnam, KR Matange, HR Thapa, B Barlow, RK Donegan, NA Nguyen, EG Saccuzzo, CT Obianyor, SC Karunakaran, P Pollet, B Rothschild-Mancinelli, S Mestre-Fos, R Guth-Metzler, AV Bryksin, AS Petrov, M Hazell, CB Ibberson, PI Penev, RG Mannino, WA Lam, AJ Garcia, JM Kubanek, V Agarwal, NV Hud, JB Glass, LD Williams, RL Lieberman. Buzz about RT-qPCR: An RT-qPCR formulation for SARS-CoV-2 detection using reagents produced at Georgia Institute of Technology. MedRXiv [link]

Widespread testing for the presence of novel coronavirus SARS-CoV-2 in patients remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. The early testing shortfall in some parts of the US can be traced to an initial shortage of supplies, expertise and/or instrumentation necessary to detect the virus by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can produce the RT-qPCR assay and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. We compare the performance of our in-house kit to a commercial product used for diagnostic testing and describe implementation of environmental testing to monitor surfaces across various campus laboratories for the presence of SARS-CoV-2.

Test Kit Figure 1

Image by Rebecca Guth-Metzler, PhD candidate, advisors: Loren Williams and Jennifer Glass (Figure 1 in Mascuch et al. 2020, MedRXiv [link].

Auto Draft

Events

PSAS: Lunar Flashlight

Lunar Flashlight is an innovative, small NASA mission to be launched as a secondary payload on the first Space Launch System, Artemis-1. This highly mass- and volume-constrained satellite will demonstrate several technologies for NASA, including the use of “green” propellant, the ability for a CubeSat-sized satellite to perform science measurements beyond low Earth orbit, and the first planetary mission to use multi-band active reflectometry from orbit. Lunar Flashlight will detect and map water ice in permanently shadowed regions of the lunar south pole by measuring surface reflectance at multiple wavelengths. Mapping and quantifying lunar water ice addresses one of NASA’s Strategic Knowledge Gaps to understand the lunar resource potential for future human exploration of the Moon.

PSAS: How inappropriate to call this Planet Earth

Events

Brief summary: The very first “ocean life detection” mission took place on board the HMS Challenger in 1872, as it set out to establish the existence of life at the deepest ocean depths. Scientists and crew sailed for four years collecting chemical, geological and biological samples from the far reaches of our world, and produced to first comprehensive survey of Earth’s ocean – from sea surface to sea floor. Today, scientists explore the ocean through a combination of human-operated and autonomous instruments. The technological landscape is changing at an unprecedented rate. Space scientists are also rapidly developing technologies required for missions to other worlds, including ocean worlds, despite the striking difference in the resources invested in ocean versus space science instrumentation. Our laboratory focuses on better understanding how matter/enery flow between the biosphere and the lithosphere. To that end, we develop technologies that help further our understand of these relationships, both in the ocean and on land.

We are, however, also committed to democratizing science by developing modular, open-design vehicle and sensor platforms that allow inexpensive commercial sensors (as well more bespoke emerging technologies) to be easily deployed on deep-sea missions. Here I will present some of the latest developments -as well as the lessons- from exploring our own inner space. We will also present our data from recent efforts aimed at examining the relationships among abiotic and biological processes in our ocean. These technologies and methods can help us unlock the mysteries of the cosmos, in particular that enduring question of whether life exists on other celestial bodies. We posit that fostering a rich and extensive collaboration among ocean and space scientists is critical if we are to advance our understanding of other ocean worlds, such as Enceladus and Europa, beyond the scope of current missions and technologies.”

PSAS: Predicting Europa and Enceladus seawater chemistry using volatile CO2 measurements

Events

The Europa Clipper mission will be able to measure volatile CO2 isotopes of Europa’s plumes and exosphere—but what can those measurements tell us about the surface ice or subsurface ocean? Our laboratory experiments interact an initial gaseous CO2 (that may be sourced from water-rock interactions at the seafloor) with various seawaters, and measure the resulting CO2 to determine what changes take place as a result of this interaction. Isotopes of CO2 from low pH systems do not show a substantial change for carbon, suggesting that carbon isotopes from a low pH Europa will reflect the original CO2.
However, alkaline (high pH) systems similar to Enceladus or a high-pH Europa show a large variability in carbon isotopes that is due to varying carbonate speciation. We use our laboratory spectra as a ‘training’ dataset for machine learning. Our preliminary work demonstrates that ‘supervised’ training of metadata and data from these spectra form clusters based on the concentration of CO2 and the composition of the seawater, and is therefore promising for future interpretation of CO2 mass spectra using predictive algorithms.

Inaugural Prebiotic Chemistry and Early Earth Environments (PCE3) Community Workshop

Events

You are invited to participate in the Inaugural Prebiotic Chemistry and Early Earth Environments (PCE3) Community Workshop, which is intended to form bridges between disparate fields of astrobiology. 

Registration is free and required to attend. You will receive an email with log-in after being approved. There is no cost to register. Register here: http://prebioticchem.org/workshop/workshop.html 

The workshop is designed to cross-pollinate between different areas of research addressing origins of life, including early earth geoscience and prebiotic chemistry. This workshop will foster intellectual cooperation and innovation across the community and thereby give rise to novel research avenues. A central goal is to root models for the emergence of prebiotic pathways in realistic planetary conditions and fully integrate the dynamics and constraints of early Earth environments into origins hypotheses. Beyond our planet, PCE3 aims to identify planetary conditions that can or cannot give rise to life’s chemistry, thus guiding future missions that target the discovery of habitable worlds.

Workshop speakers have been asked to give a state-of-the-art talk in their respective sub-theme to *other* fields of the Origins of Life community. These talks will be accessible to a non-specialist and aim to highlight the points of agreement, the important remaining debates, uncertainties, and essential next steps. The presentations are meant to be “neutral” in that they don’t advocate for any specific model, but instead cover the range of scientific opinions. The talks will explain explicitly how these interdisciplinary themes are relevant and important to the Origin of Life community. The foundational information presented in this workshop will enable future workshops and collaborations that bridge the many disciplines that are part of PCE3.
 
Each of five interdisciplinary themes will be the focus of one week of the workshop:
 
1. Earliest Planetary Formation
The primer talks will be posted on Monday, October 5.
    *   Stellar Evolution (Edward Schwieterman)
    *   Accretionary History & Planetary Dynamics (Rebecca Fisher)
    *   Origin of the Moon (Miki Nakajima)
    *   Hadean Geodynamics (Rick Carlson)
    *   Impact History (Simone Marchi)
The discussion meeting on this topic will be on Friday, October 9, at 1pm Eastern Daylight Time.
 
2. Evolution of the Near Surface
The primer talks will be posted on Monday, October 12.
    *   Chemical Crustal Evolution & Oldest Crust (Ann Bauer)
    *   Physical Crustal Evolution (Brad Foley)
    *   Atmosphere and Ocean Evolution (Kevin Zahnle)
    *   Lithospheric Fluid Composition (Everett Shock)
The discussion meeting on this topic will be on Friday, October 16, at 1pm Eastern Daylight Time.
 
3. Inventories, Geological Settings, and Building Blocks
The primer talks will be posted on Monday, October 19.
    *   Geological Settings and Local Conditions (Martin van Kronendonk)
    *   Meteoritic/Exogenous Delivery (Zita Martins)
    *   Haze and Atmospheric Synthesis (David Catling)
    *   Surface Chemistry and Abiotic Organic Synthesis (Benedicte Menez)
The discussion meeting on this topic will be on Friday, October 23, at 1pm Eastern Daylight Time.
 
4. Prebiotic Complexity
The primer talks will be posted on Monday, November 9.
    *   Overview (David Deamer)
    *   Formation of Precursors, Simple Molecules, Selection I (James Cleaves)
    *   Formation of Precursors, Simple Molecules, Selection II (Laurie Barge)
    *   Processes Acting on Building Blocks, Assembly and Complexification I (Luke Leman)
    *   Processes Acting on Building Blocks, Assembly and Complexification II (Christine Keating)
The discussion meeting on this topic will be on Friday, November 13, at 1pm Eastern Daylight Time.
 
 5. Peering into the Past with Today’s Biochemistry
The primer talks will be posted on Monday, November 16.
    *   Overview – Biochemistry meets Prebiotic Chemistry (Ram Krishnamurthy)
    *   Genetics (Hannes Mutschler)
    *   Metabolism (George Cody)
    *   Chemical Evolution (Moran Pinter-Frenkel).
    *   Earliest Evidence of Life (Elizabeth Bell)
    *   Rewinding Life’s Clock (Greg Fournier)
The discussion meeting on this topic will be on Friday, November 20, at 1pm Eastern Daylight Time.
 
Questions? Please email workshop organizer Loren Williams.

Aomawa Shields, GT Physics Seminar, Sept 21, 2020

Events

Recipe for a Habitable Planet

Prof Aomawa Shields of UC Irvine
Monday, Sept 21 at 3pm Eastern

The discovery of numerous small exoplanets has brought the search for life beyond the Solar System into sharp focus on many potentially habitable worlds where life may exist. However, many factors 
and processes can affect planetary climate and habitability, most of which are currently unconstrained by observations, and their effects must be understood to accurately determine a planet’s habitability potential and prioritize planets for observational follow-up. Professor Shields will describe the methods used by her research group to quantify the effects on planetary climate of a range of factors important for planetary habitability, and share recent results from this work, which demonstrates how the unique interactions between a star and a planet’s atmosphere and surface can produce either a recipe of successful ingredients for habitable surface conditions, or one that reveals less favorable planetary prospects for life.

Seminar details here.